Macrophages directly mediate diabetic renal injury.

نویسندگان

  • Hanning You
  • Ting Gao
  • Timothy K Cooper
  • W Brian Reeves
  • Alaa S Awad
چکیده

Monocyte/macrophage recruitment correlates strongly with the progression of renal impairment in diabetic nephropathy (DN), yet their direct role is not clear. We hypothesized that macrophages contribute to direct podocyte injury and/or an abnormal podocyte niche leading to DN. Experiments were conducted in CD11b-DTR mice treated with diphtheria toxin (DT) to deplete macrophages after streptozotocin-induced diabetes. Additional experiments were conducted in bone marrow chimeric (CD11b-DTR→ C57BL6/J) mice. Diabetes was associated with an increase in the M1-to-M2 ratio by 6 wk after the induction of diabetes. Macrophage depletion in diabetic CD11b-DTR mice significantly attenuated albuminuria, kidney macrophage recruitment, and glomerular histological changes and preserved kidney nephrin and podocin expression compared with diabetic CD11b-DTR mice treated with mutant DT. These data were confirmed in chimeric mice indicating a direct role of bone marrow-derived macrophages in DN. In vitro, podocytes grown in high-glucose media significantly increased macrophage migration compared with podocytes grown in normal glucose media. In addition, classically activated M1 macrophages, but not M2 macrophages, induced podocyte permeability. These findings provide evidence showing that macrophages directly contribute to kidney injury in DN, perhaps by altering podocyte integrity through the proinflammatory M1 subset of macrophages. Attenuating the deleterious effects of macrophages on podocytes could provide a new therapeutic approach to the treatment of DN.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Macrophages in streptozotocin-induced diabetic nephropathy: potential role in renal fibrosis.

BACKGROUND Renal fibrosis is central to the progression of diabetic nephropathy; however, the mechanisms responsible for fibroblast and matrix accumulation in this disease are only partially understood. Macrophages accumulate in diabetic kidneys, but it is unknown whether macrophages contribute to renal fibrosis. Therefore, we examined whether macrophage accumulation is associated with the prog...

متن کامل

Adenosine A2A receptor activation attenuates inflammation and injury in diabetic nephropathy.

We previously demonstrated the anti-inflammatory effects and renal tissue protection in response to adenosine A(2A)-receptor (A(2A)R) activation in acute renal injury. We sought to extend these studies and determine the efficacy of A(2A)R agonists in a chronic model of renal injury. We hypothesized that A(2A) agonists mediate renal tissue protection in diabetic nephropathy by reducing glomerula...

متن کامل

Macrophage polarization in kidney diseases.

Macrophage accumulation associates closely with the degree of renal structural injury and renal dysfunction in human kidney diseases. Depletion of macrophages reduces while adoptive transfer of macrophages worsens inflammation in animal models of the renal injury. However, emerging evidence support that macrophage polarization plays a critical role in the progression of a number of kidney disea...

متن کامل

Macrophages mediate lung inflammation in a mouse model of ischemic acute kidney injury.

Serum IL-6 is increased in acute kidney injury (AKI) and inhibition of IL-6 reduces AKI-mediated lung inflammation. We hypothesized that circulating monocytes produce IL-6 and that alveolar macrophages mediate lung inflammation after AKI via chemokine (CXCL1) production. To investigate systemic and alveolar macrophages in lung injury after AKI, sham operation or 22 min of renal pedicle clamping...

متن کامل

CSF-1 signals directly to renal tubular epithelial cells to mediate repair in mice.

Tubular damage following ischemic renal injury is often reversible, and tubular epithelial cell (TEC) proliferation is a hallmark of tubular repair. Macrophages have been implicated in tissue repair, and CSF-1, the principal macrophage growth factor, is expressed by TECs. We therefore tested the hypothesis that CSF-1 is central to tubular repair using an acute renal injury and repair model, isc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 305 12  شماره 

صفحات  -

تاریخ انتشار 2013